A survey of control-chart pattern-recognition literature (1991-2010) based on a new conceptual classification scheme
نویسندگان
چکیده
Control Chart Pattern Recognition (CCPR) is a critical task in Statistical Process Control (SPC). Abnormal patterns exhibited in control charts can be associated with certain assignable causes adversely affecting the process stability. Abundant literature treats the detection of different Control Chart Patterns (CCPs). In fact, numerous CCPR studies have been developed according to various objectives and hypotheses. Despite the widespread literature on this topic, efforts to review and analyze research on CCPR are very limited. For this reason, this survey paper proposes a new conceptual classification scheme, based on content analysis method, to classify past and current developments in CCPR research. More than 120 papers published on CCPR studies within 1991–2010 were classified and analyzed. Major findings of this survey include the following. (1) The most popular CCPR studies deal with independently and identically distributed process data. (2) Some recent studies on identification of mean shifts or/and variance shifts of a multivariate process are based on innovative techniques. (3) The percentage of studies that address concurrent pattern identification is increasing. (4) The majority of the reviewed articles use Artificial Neural Network (ANN) approach. Feature-based techniques, in particular wavelet-denoise, are investigated for improving the recognition performance of ANN. For the same reason, there is a general trend followed by many authors who propose hybrid, modular and integrated ANN recognizer designs combined with decision tree learning, particle swarm optimization, etc. (5) There are two main categories of performance criteria used to evaluate CCPR approaches: statistical criteria that are related to two conventional Average Run Length (ARL) measures, and recognition-accuracy criteria, which are not based on these ARL measures. The most applied criteria are recognition-accuracy criteria, mainly for ANN-based approaches. Performance criteria which are related to ARL measures are insufficient and inappropriate in the case of concurrent pattern identification. Finally, this paper briefly discusses some future research directions and our perspectives. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملA New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)
Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...
متن کاملA Bayesian Approach for the Recognition of Control Chart Patterns
In this research, an iterative approach is employed to recognize and classify control chart patterns. To do this, by taking new observations on the quality characteristic under consideration, the Maximum Likelihood Estimator of pattern parameters is first obtained and then the probability of each pattern is determined. Then using Bayes’ rule, probabilities are updated recursively. Finally, when...
متن کاملThe Optimal Design of the VSI T^2 Control Chart
Recent studies have shown that the variable sampling interval (VSI) scheme helps practitioners detect process shifts more quickly than the classical scheme (FRS). In this paper, the economically and statistically optimal design of the VSI T2 control chart for monitoring the process mean vector is investigated. The cost model proposed by Lorenzen and Vance (1986) is minimized through a genetic a...
متن کاملA Moving Avarage Variation Control Chart based on Bayesian Predictive Density
Recently several control charts have been introduced in the statistical process control literature which are based on the idea of Bayesian Predictive Density (BPD). Among these charts is the variation control chart which we refer to it as VBPD chart. In this paper we add the idea of Moving Average to VBPD chart and introduce a new variation control chart which has all advantages of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Industrial Engineering
دوره 63 شماره
صفحات -
تاریخ انتشار 2012